

4031 Alvis Court Rocklin, Ca 95677 Tel: 877.464.6649 Fax: 916.632.2139 E-mail: info@mionix.com

Listeria monocytogenes Shelf-Life Challenge Study on Modified Atmosphere-Packaged Roasted Split Chicken Breast

For

Mionix Corporation

The National Food Laboratory

MW6693

October 16, 2003

By Vidya Ananth Research Microbiologist Process Research and Microbiology Division

Listeria monocytogenes Shelf-Life Challenge Study on Modified Atmosphere-Packaged Roasted Split Chicken Breast

BACKGROUND:

Mionix Corporation and a top five USA poultry processor wished to determine the "antilisterial" effects of Mionix Safe₂O-RTE 01 on roasted split chicken breast packaged under a modified atmosphere of (O₂ (0.6-1.2%), CO₂(32-35%), N₂(balance)) and stored at 4.4°C.

OBJECTIVES:

To determine the ability of modified atmosphere packaged roasted split breast to support the growth of *Listeria monocytogenes* during the course of an inoculated pack study.

MATERIALS AND METHODS:

<u>Organisms</u>. Five strains of *L. monocytogenes* were provided by the top five USA poultry processor (PP).

Strain #	Source
ATCC # 19111	Serovar 1, Poultry isolate
ATCC # 19115	Serovar 4b, Human isolate
PP # 400	Human isolate from lunchmeat
PP # 1778	Human isolate from lunchmeat
PP # 2926	Human isolate from lunchmeat

Strains of *Listeria monocytogenes* used in this study.

The five-strain cocktail was crioadapted and prepared as follows: All five strains were incubated separately at 30°C for 18 hours. The cultures were diluted 1:5 into a fresh, prewarmed medium and incubated for 4 hours at 30°C. The tubes were transferred to a 5°C incubator for 24 hours and enumerated via Direct Microscopy Count (DMC) by means of a Petroff-Hauser counting chamber. Equal concentrations of each culture were combined to obtain an inoculum cocktail with a target level of 100 cfu/per serving size. Plate counts of the cocktail were performed as a confirmation of the DMC before, during and after inoculation using Modified Oxford agar containing Modified Oxford Supplement. The MOx plates were incubated at 35°C for 2 days before results were recorded. <u>Media.</u> Brain Heart Infusion (BHI) broth was used as the culture medium. UVM broth and Fraser broth were used as the MPN media. Modified Oxford medium (MOx) and Horse Blood agar were used in confirmations.

<u>Product</u>. The top five USA poultry processor provided product for testing. The product tested was roasted split breast.

Inoculation and Packaging. The weight of the retail sample packages were recorded. The packaging weight and the actual sample weights were noted. Weights before and after treatment were also noted. Intact retail packages were aseptically opened.

Each roasted split breast was challenged at the target inoculum of 100 cfu/serving. Individual split breasts (one breast per package) were inoculated on the surface of the skin with the culture cocktail and spread with a sterile hockey stick. The tray was refrigerated for 2 hours to allow attachment of L. monocytogenes. After the end of two hours, three treatments were provided to the breasts. **Treatment 1** consisted of inoculated control samples, where the breasts were transferred to another tray and the tray was packaged under a modified atmosphere of (O₂(0.6-1.2%), CO₂(32-35%), N₂(balance)) and stored at 4.4°C. For treatment 2 the Mionix Solution Safe₂OTM_{brand}-RTE 01 was diluted, one part solution with two parts deionized H₂O before application. Each split breast was sprayed with diluted Mionix treatment solution for 20 seconds with an atomizing spray equipment, with 1.5 feet of distance between the spray nozzle and chicken breasts. The flow rate was about 180ml/min. Treated chicken breasts from each tray were transferred into a clean tray immediately after the spray. For treatment 3, sterile deionized H₂O was used to spray the chicken breasts the same way as with the Mionix treatment group. All chicken breasts (including Mionix treated and water treated) were kept in a 35°F refrigerator for 4 hours before packaging under a modified atmosphere of (O₂(0.6-1.2%), CO₂(32-35%), N₂(balance)) and sealing with a Multivac vacuum packager. The product was sealed in packaging film supplied by the top five USA poultry processor.

Uninoculated samples were also packaged under a modified atmosphere of ($O_2(0.6-1.2\%)$, $CO_2(32-35\%)$, $N_2(balance)$) and sealed with a Multivac vacuum packager. These samples served as uninoculated controls for headspace composition analysis, and pH and a_w analysis on the sampling dates.

Incubation. Samples were incubated at 4.4 °C for up to 40 days.

<u>MPN Analysis and Confirmations</u>. Samples were tested by using a nine tube MPN of 10, 1 and .1 gram series initially; during the study the MPN dilutions were changed as cell counts increased per gram of product. Samples were enriched in the UVM broth tubes at 30°C for 22 ± 2 hours. At the end of the incubation period, an aliquot of 0.1 ml from each UVM broth tube was transferred to a corresponding labeled 10ml tube of Fraser broth supplemented with Ferric Ammonium Citrate and incubated at 35°C for 18-24 hours. If the tube appeared negative, tubes were reincubated at 35°C until a total incubation time of 48 ± 2 hours was reached. All nine tubes were then streaked onto

Modified Oxford (MOx) agar and examined for appropriate medium reaction. Every positive colony from the MOx plate was streaked onto Horse Blood agar plates and incubated for 24 hours at 35°C. All confirmations (beta hemolysis reaction, catalase reaction & tumbling motility) were looked at/performed using colonies from the blood agar plates.

<u>**Time 0 Testing.**</u> On the day of inoculation, 3 uninoculated samples, 3 Mionix treated and three water treated samples were enumerated using MPN method. Two samples were analyzed for headspace composition, pH and a_w . Two uninoculated samples were also analyzed for aerobic plate count and lactic acid bacteria.

Sampling/Enumeration. Samples incubated at 4.4°C were tested on 0, 5, 8, 14, 20, 22, 26, 27, 28, 29, 32, 34, and 40 days after inoculation. On each sampling date, 3 uninoculated samples, 3 Mionix treated and three water treated samples were enumerated using MPN method. Two uninoculated samples were also analyzed for headspace composition, pH & a_w on the sampling dates.

RESULTS AND DISCUSSION:

Results of the entire study are presented in the tables of Appendix A.

The results for Day 0 initial microbiological analysis samples are presented in Table 1. Chemistry results (Headspace gas composition) are presented in Table 2. The pH and aw results are presented in Table 3. Microbiological analysis (inoculated controls, Mionix treated and water treated) are presented in Table 4. Weight gain/loss for uninoculated (boned) Mionix treated samples are presented in Table 5. Weight gain/loss for inoculated Mionix treated samples are presented in Table 6. Weight gain/loss for water treated samples are presented in Table 7.

The untreated chicken breasts had < 10 cfu/gm of both aerobic plate count and lactic acid bacteria on day 1. As depicted in Table 2, hydrogen gas was detected from day 11 onwards on testing for the head space gas composition. Mionix (Mionix Solution $Safe_2O^{TM}_{brand}$ -RTE 01) treated samples had target populations of less than 2 logs at the end of the 40 day shelf life study.

RESULTS AND DISCUSSION:

This 40 day shelf life study demonstrates that Mionix Solution ($Safe_2O^{TM}_{brand}$ -RTE 01), used in the concentrations mentioned above is effective in inhibiting the growth of *Listeria monocytogenes* on MAP packaged chicken breasts when compared to inoculated control samples and inoculated water treated samples. *Listeria monocytogenes* populations increased by less than 2 log cycles by the end of the 40-day study period.

APPENDIX A (TABLES 1-7)

Table 1.

Analysis of Lactic Acid Bacteria and Aerobic Plate Count on untreated Chicken Breasts

Samples	Aerobic Plate Count	Lactic Acid Bacteria
	(Cfu/gm)	(Cfu/gm)
1	<10	<10
2	<10	<10

Analysis of *Listeria monocytogenes*------ Initial, Middle and Final plate count

Initial	Middle	Final
Cfu/ml	Cfu/ml	Cfu/ml
520	720	730

Day	Sample1 CO ₂	Sample 1 O ₂	Sample1 N ₂	Sample1 H ₂	Sample 2 CO ₂	Sample 2 O ₂	Sample 2 N ₂	Sample 2 H ₂
0	23.3	3.0	72.7	BDT*	28.3	1.4	70.4	BDT*
5	26.0	1.0	73.0	BDT*	22.2	0.1	77.7	BDT*
11	38.4	0.1	50.6	10.9	29.4	0.0	68.9	1.7
14	31.3	0.0	65.2	3.5	28.8	0.2	69.5	1.5
20	30	0.0	62.1	7.9	38.7	0.1	48.2	13.1
22	35.8	0.0	52.3	11.8	37.6	0.1	48.1	14.2
26	42.3	0.1	38.4	19.3	36.9	0.0	57.1	5.9
27	42.2	0.1	44.3	13.4	44.9	0.1	41.6	13.4
28	53.2	0.0	24.0	22.8	40.0	0.0	42.1	17.8
29	44.7	0.0	39.6	15.6	41.7	0.0	39.3	18.9
32	50.4	0.0	24.4	25.2	53.8	0.0	24.0	22.1
34	48.6	0.0	34.5	16.8	49.1	0.0	29.9	21.0
40	50.8	0.0	27	22.2	49.6	0.1	30.5	19.8

Table 2. Headspace Gas Composition (O₂(0.6-1.2%), CO₂(32-35%), N₂(balance))

BDT*: Below detection threshold

Table 3.	pН	&	Water	Activity
----------	----	---	-------	----------

Day	Samples	pН	Average	$\mathbf{A}_{\mathbf{w}}$	Average A _w
			pH		
0	1	5.70	5.85	0.979	0.981
	2	6.00		0.983	
5	1	5.49	5.55	0.989	0.989
	2	5.61		0.99	
8	1	5.67	5.77	0.99	0.989
	2	5.88		0.989	
14	1	6.12	5.92	0.988	0.989
	2	5.71		0.989	
20	1	5.59	5.64	0.988	0.988
	2	5.69		0.987	
22	1	5.79	5.80	0.984	0.985
	2	5.82		0.987	
26	1	5.85	5.77	0.985	0.986
	2	5.70		0.986	
27	1	5.75	5.82	1.0	0.999
	2	5.90		0.997	
28	1	5.88	5.79	1.006	1.006
	2	5.71		1.007	
29	1	6.21	6.08	0.982	0.983
	2	5.95		0.984	
32	1	5.95	5.96	0.983	0.983
	2	5.97		0.983	
34	1	6.05	5.96	0.996	0.999
	2	5.87		1.003	
40	1	5.95	5.88	0.986	0.984
	2	5.81		0.983	

Table 4. Microbiological AnalysisProduct: Roasted Chicken BreA = Inoculated samples B = Inoculated and then treated with water, C = Inoculated and then

Pull Date	Treatment	MPN (g/ml)	Average	Log Value
	Type		MPN	
	Al	0.43		
	D1	+		
	A2	0.93	1.25	0.10
	D1	+		
	A3	2.40		
	D1	+		
0				
0	B1	0.072		
	D2	+		
	B2	0.074	0.073	-1.13
	D2	+		
	B3	0.074		
	D2	+		
	C1	< 0.03		
	D3	-		
	C2	< 0.03	< 0.044	<-1.36
	D3	-		
	C3	0.072		
	D3	-		
	A1	>11		
	D1	+		
	A2	11	>11	>1.04
	D1	+		
	A3	>11		
	D1	+		
5				
5	B1	2.4		
	D2	+		
	B2	11	5.27	0.72
	D2	+		
	B3	2.4		
	D2	+		
	C1	0.29		
	D3	-		
	C2	2.4	0.91	-0.04
	D3	-		
	C3	0.036		
	D3	-		

treated with Mionix solution, D = Bag (1:10, remainder of the sample)

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then
treated with Mionix solution, $D = Bag$ (1:10, remainder of the sample)

Pull Date	Treatment	MPN (g/ml)	Average	Log Value
	Туре		MPN	-
	Al	110		
	D1	+		
	A2	46	67.33	1.83
	D1	+		
	A3	46		
	D1	+		
0				
8	B1	9.3		
	D2	+		
	B2	24	47.77	1.68
	D2	+		
	B3	110		
	D2	+		
	C1	2.3		
	D3	-		
	C2	2.3	2.30	0.36
	D3	-		
	C3	2.3		
	D3	-		
	A1	>1100		
	D1	+		
	A2	>1100	>1100	>3.04
	D1	+		
	A3	>1100		
	D1	+		
14				
14	B1	120		
	D2	+		
	B2	>1100	>773	>2.89
	D2	+		
	B3	>1100		
	D2	+		
	C1	< 0.03		
	D3	-		
	C2	< 0.03	< 0.03	<-1.52
	D3	-		
	C3	< 0.03		
	D3	-		

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then
treated with Mionix solution, $D = Bag$ (1:10, remainder of the sample)

Pull Date	Treatment	MPN (g/ml)	Average	Log Value
	Type	Ű,	MPN	U
	Al	24000		
	D1	+		
	A2	46000	26433	4.42
	D1	+		
	A3	9300		
	D1	+		
20				
20	B1	4600		
	D2	+		
	B2	2400	6000	3.78
	D2	+		
	B3	11000		
	D2	+		
	C1	< 0.03		
	D3	-		
	C2	< 0.03	< 0.03	<-1.52
	D3	-		
	C3	< 0.03		
	D3	-		
	A1	24000		
	D1	+		
	A2	110000	60000	4.78
	D1	+		
	A3	46000		
	D1	+		
\sim				
22	B1	46000		
	D2	+		
	B2	46000	33167	4.52
	D2	+		
	B3	7500		
	D2	+		
	C1	< 0.03		
	D3	-		
	C2	< 0.03	< 0.03	<-1.52
	D3	-		
	C3	< 0.03		
	D3	-		

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then
treated with Mionix solution, $D = Bag$ (1:10, remainder of the sample)

Pull Date	Treatment	MPN (g/ml)	Average	Log Value	
	Туре		MPN		
	A1	1100000			
	A2	75000	758333	5.88	
	A3	1100000			
26		-			
20	B1	23000			
	B2	230	374410	5.57	
	B3	1100000			
	C1	<0.03			
	D3	-			
	C2	< 0.03	< 0.03	<-1.52	
	D3	-			
	C3	< 0.03			
	D3	-			
	A1	110000			
	D1	+			
	A2	110000	110000	5.04	
	D1	+			
	A3	110000			
	D1	+			
25					
27	B1	24000			
	D2	+			
	B2	46000	28333	4.45	
	D2	+			
	B3	15000			
	D2	+			
	C1	0.03			
	D3	-			
	C2	< 0.03	< 0.03	<-1.52	
	D3	-			
	C3	< 0.03			
	D3				

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then
treated with Mionix solution, $D = Bag$ (1:10, remainder of the sample)

Pull Date	Treatment Type	MPN (g/ml)	Average MPN	Log Value
	Al	230000		
		02000	117222	5.07
	A2	92000	11/333	5.07
	A3	30000		
	-			
28				
20	B1	230		
	DO	02000	22542	1 52
	B2	93000	55545	4.55
	B3	7400		
	C1	< 0.03		
	D3	-	<0.02	< 1.50
	D2	<0.03	<0.05	<-1.52
	C3	<0.03		
	D3	-		
	A1	230000		
	A2	2400000	953333	5.98
	۸3	230000		
	A3	230000		
• •				
29	B1	23000		
				1.00
	B2	9200	11933	4.08
	B3	3600		
	B5	5000		
	C1	< 0.03		
	D3	-		
	C2	< 0.03	< 0.03	<-1.52
	D3	-		
	D3	<0.03		

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then treated with Mionix solution, D = Bag (1:10, remainder of the sample)

<i>(</i>
6
5
,

A = Inoculated samples, B = Inoculated and then treated with water, C = Inoculated and then treated with Mionix solution, D = Bag (1:10, remainder of the sample)

Pull Date	Treatment Type	MPN (g/ml)	Average MPN	Log Value
	Al	1100000		
	A2	1100000	1100000	6.04
	A3	1100000		
40				
40	B1	150		
				4.50
	B2	110000	38150	4.58
	D.C.	1200		
	B3	4300		
	~ 1	• 10	[
	Cl	240		
	D3	-	-90.2	-1.00
	C2	<0.3	<80.2	<1.90
	D3	-		
	D2	<0.3		
	D3	-		

Samples	Initial Wt of	Weight of	Weight of	Weight of	Weight
	Breasts	Breast 1	Breast 2	Breast 1& 2	gain/loss
	(without tray				
1	weight)				
1	547.4	257.06	292.06	549.12	1.72
2	572.97	315.92	253.51	569.43	-3.54
3	456.26	286.02	171.96	457.98	1.72
4	448.7	174.83	277.08	451.91	3.21
5	468.7	226.54	246.02	472.56	3.86
6	508.22	240.27	266.05	506.32	-1.9
7	533.12	300.57	233.13	533.7	0.58
8	542.96	231.07	292.27	523.34	-19.62
9	428.89	274.86	163.68	438.54	9.65
10	462.27	216.11	250.73	466.84	4.57
11	541.47	251.27	284.33	535.6	-5.87
12	495.24	198.03	293.22	491.25	-3.99
13	405.31	209.42	193.57	402.99	-2.32
14	490.66	276.82	214.72	491.54	0.88
15	472.74	213.41	260.49	473.9	1.16
16	538.41	247.33	288.37	535.7	-2.71
17	539.16	285	256.01	541.01	1.85
18	486.48	251.63	237.36	488.99	2.51
19	534.67	320.19	217.16	537.35	2.68
20	542.74	253.4	291.88	545.28	2.54
21	510.48	267.57	229.96	497.53	-12.95
22	496.03	268.93	227.69	496.62	0.59
23	489.64	242.53	258.46	500.99	11.35
24	505.21	280	245.66	525.66	20.45
25	547.99	283.72	262.6	546.32	-1.67
26	542.42	238.66	268.21	506.87	-35.55
27	467.97	232.68	242.7	475.38	7.41
28	420.99	203.08	222.98	426.06	5.07
29	547.4	257.06	292.06	549.12	1.72
30	572.97	315.92	253.51	569.43	-3.54
31	456.26	286.02	171.96	457.98	1.72
32	448.7	174.83	277.08	451.91	3.21
33	468.7	226.54	246.02	472.56	3.86

Table 5. Weight (in grams) of uninoculated boned Mionix treated Chicken Breast

Samples	Initial Wt of	Weight of	Weight of	Weight of	Weight
	breasts	Breast 1	Breast 2	Breast 1& 2	gain/loss
	(without tray				
	weight)				
1	434.59	203.65	243.71	447.36	12.77
2	450.06	204.19	258.74	462.93	12.87
3	488.76	217.31	284.49	501.8	13.04
4	476.45	267.93	221.39	489.32	12.87
5	469.78	242	238.92	480.92	11.14
6	465.28	226.92	255.58	482.5	17.22
7	529.82	218.38	320.81	539.19	9.37
8	421.22	208.51	227.01	435.52	14.3
9	478.18	243.83	249.11	492.94	14.76
10	427.48	219.22	224.6	443.82	16.34
11	484.38	274.23	230.63	504.86	20.48
12	487.29	232.58	264.89	497.47	10.18
13	431	232.82	212.45	445.27	14.27
14	490.66	188.99	310.58	499.57	8.91
15	509.64	251.94	271.29	523.23	13.59
16	522.71	236.17	303.71	539.88	17.17
17	420.05	208.2	223.04	431.24	11.19
18	445.85	236.52	225.39	461.91	16.06
19	438.61	272.6	185.26	457.86	19.25
20	442.01	220.07	232.05	452.12	10.11
21	453.43	241.33	225.59	466.92	13.49
22	630.07	245.88	393.64	639.52	9.45
23	491.56	237.73	270.59	508.32	16.76
24	439.26	230.36	224.82	455.18	15.92
25	453.05	269.95	201.07	471.02	17.97
26	446.33	218.98	241.28	460.26	13.93
27	428.86	242.8	206.16	448.96	20.1
28	508.8	283.89	242.3	526.19	17.39
29	506.91	242.8	273.37	516.17	9.26
30	484.61	265.38	237.12	502.5	17.89
31	443	255	204.42	459.42	16.42
32	460.46	251.9	224.82	476.72	16.26
33	454.79	272.69	200.14	472.83	18.04
34	404.43	206.22	211.15	417.37	12.94
35	430.71	183.63	261.62	445.25	14.54
36	421.89	190.51	241.94	432.45	10.56
37	478.5	232.62	259.71	492.33	13.83
38	475.19	233.8	254.44	488.24	13.05
39	492.96	237.24	274.36	511.6	18.64

Table 6. Weight (in grams) of inoculated deboned Mionix treated Chicken Breast

40	498.28	267.61	248.17	515.78	17.5
41	512.54	263.63	263.46	527.09	14.55
42	481.02	189.46	303.14	492.6	11.58

Table 7. Weight (in grams) of inoculated deboned Water treated Chicken Breast

Samples	Initial Wt of	Weight of	Weight of	Weight of	Weight
	breasts	Breast 1	Breast 2	Breast 1& 2	gain/loss
	(without tray				U
	weight)				
1	427.93	203.56	230.45	434.01	6.08
2	497.81	251.87	251.59	503.46	5.65
3	516.85	240.2	285.84	526.04	9.19
4	441.01	225.82	225.51	451.33	10.32
5	401.46	214.33	213.95	428.28	26.82
6	467.26	235.03	239.52	474.55	7.29
7	507.23	266.31	251.61	517.92	10.69
8	544.58	260.48	294.04	554.52	9.94
9	518.55	222.01	316.1	538.11	19.56
10	459.02	224.57	245.44	470.01	10.99
11	467.24	222.82	259.94	482.76	15.52
12	456.29	271.77	197.99	469.76	13.47
13	488.04	256.51	239.46	495.97	7.93
14	525.59	235.4	298.28	533.68	8.09
15	377.19	210.55	181.25	391.8	14.61
16	447.18	201.85	256.16	458.01	10.83
17	425.96	246.9	195.63	442.53	16.57
18	497.09	181.51	325.33	506.84	9.75
19	495.24	289.02	217.81	506.83	11.59
20	491.53	218.59	283.7	502.29	10.76
21	442.77	186.42	265.68	452.1	9.33
22	473.92	240.44	242.48	482.92	9
23	496.38	2/4.95	237.07	512.02	15.64
24	534.79	242.30	309.87	552.23	17.44
25	430.08	251.1	192.49	443.39 500.21	12.91
20	487.80	212.77	270.10	182.06	7.07
28	536.54	213.77	270.13	547.83	11.29
29	509.84	202.9	284.75	522.26	12.42
30	426.32	272.19	200.07	436 31	9.99
31	423.89	209.2	227.84	437.04	13.15
32	453.46	234.62	228.45	463.07	9.61
33	516.97	258.72	240.44	499.16	-17.81
34	462.72	218.4	255.93	474.33	11.61
35	465.17	230.56	243.73	474.29	9.12
36	534.03	236.28	309.32	545.6	11.57
37	486.24	264.07	263.66	527.73	41.49
38	489.86	230.33	266.85	497.18	7.32
39	416.7	231.86	197.33	429.19	12.49
40	454.05	224.46	239.8	464.26	10.21
41	526.69	234.42	299.52	533.94	7.25
42	485.31	229.42	270.15	499.57	14.26

43	427.95	225.18	209.6	434.78	6.83
44	453.95	234.56	229.19	463.75	9.8